The LuaTgX-ja package

The LuaTgX-ja project team

April 18, 2012

Contents

I User’s manuall

[L__Introduction|

2 Getting Started|

2.3 Using in plain TEX|
2.4 Using in INTpX]
2.5 Changing Fonts|

2.6 fontspecl

13 Changing Parameters|
3.1 Editing the range of JAchars|
13.2 kanjiskip and xkanjiskip|

13.3 Insertion Setting of xkanjiskip|
[3.4 Shifting Baseline|

3.5 Cropmarkl

(LI Reference

4 Font Metric and Japanese Font|

4.1 \jfont primitive]
4.2 Prefix psft|
4. r re of JEM filef.
4.4 Math Font Family|
4.5 Callbacksl

6 _Parameters|

.1 \ltjsetparameter primitive|

6 Other Primitives
6.1 Primitives for Compatibility| .
6.2 \inhibitglue primitive| . . .

|7 Control Sequences for IATEX 2¢|

8.1 1luatexja-fontspec.sty| . .
8.2 luatexja-otf.styl.

=R W w W

0o = O ot ot ot W

co Qo

12

12
12
13
13
15
15

16
16
17

18
18
18

19
19
20

(III Implementations|

19 Storing Parameters|
9.1 Used Dimensions, Attributes and whatsit nodes|
9.2 Stack System of LuaTgX-ja| L

[T0 Linebreak after Japanese Character]
[10.1 Reference: Behavior in pTEX| o
110.2 Behavior in LualpX-jal.

111 Insertion of JEFM glues, kanjiskip and xkanjiskip|

[11.3 O00000000000000] © . & oo e e e e e e e
114 OOOOOOO0200000 A0000. s s,

15 OOOOOO

12 psft

[References|

20

20
20
22

23
23
23

24
24
24
26
27
28

32

32

This documentation is far from complete. It may have many grammatical (and contex-

tual) errors. Also, several parts (especially, Section are written in Japanese only.

Part 1
User’s manual

1 Introduction

The LuaTEX-ja package is a macro package for typesetting high-quality Japanese documents when using
LuaTgX.

1.1 Backgrounds

Traditionally, ASCII pTEX, an extension of TEX, and its derivatives are used to typeset Japanese docu-
ments in TEX. pTEX is an engine extension of TEX: so it can produce high-quality Japanese documents
without using very complicated macros. But this point is a mixed blessing: pTEX is left behind from
other extensions of TEX, especially e-TEX and pdfTEX, and from changes about Japanese processing in
computers (e.g., the UTF-8 encoding).

Recently extensions of pTEX, namely upTEX (Unicode-implementation of pTEX) and e-pTEX (merging
of pTEX and e-TEX extension), have developed to fill those gaps to some extent, but gaps still exist.

However, the appearance of LuaTgX changed the whole situation. With using Lua ‘callbacks’, users
can customize the internal processing of LuaTEX. So there is no need to modify sources of engines to
support Japanese typesetting: to do this, we only have to write Lua scripts for appropriate callbacks.

1.2 Major Changes from pTEX

The LuaTgX-ja package is under much influence of pTEX engine. The initial target of development
was to implement features of pTEX. However, LuaTgX-ja is not a just porting of pTEX; unnatural
specifications/behaviors of pTEX were not adopted.

The followings are major changes from pTEX:

o A Japanese font is a tuple of a ‘real’ font, a Japanese font metric (JFM, for short), and an optional
string called ‘variation’.

o In pTEX, a line break after Japanese character is ignored (and doesn’t yield a space), since line
breaks (in source files) are permitted almost everywhere in Japanese texts. However, LuaTEX-ja
doesn’t have this function completely, because of a specification of LuaTgX.

e The insertion process of glues/kerns between two Japanese characters and between a Japanese
character and other characters (we refer these glues/kerns as JAglue) is rewritten from scratch.

— As LuaTgX’s internal character handling is ‘node-based’ (e.g., of{}fice doesn’t prevent liga-
tures), the insertion process of JAglue is now ‘node-based’.

— Furthermore, nodes between two characters which have no effects in line break (e.g., \special
node) and kerns from italic correction are ignored in the insertion process.

— Caution: due to above two points, many methods which did for the dividing the process of the
insertion of JAglue in pTEX are not effective anymore. In concrete terms, the following two
methods are not effective anymore:

oo{3on oo\/aa
If you want to do so, please put an empty hbox between it instead:
OO \hbox{} 1]

— In the process, two Japanese fonts which only differ in their ‘real’ fonts are identified.

o At the present, vertical typesetting (tategaki), is not supported in LuaTgEX-ja.

For detailed information, see Part

1.3 Notations

In this document, the following terms and notations are used:

e Characters are divided into two types:

— JAchar: standing for Japanese characters such as Hiragana, Katakana, Kanji and other
punctuation marks for Japanese.

— ALchar: standing for all other characters like alphabets.
We say ‘alphabetic fonts’ for fonts used in ALchar, and ‘Japanese fonts’ for fonts used in JAchar.

e A word in a sans-serif font (like prebreakpenalty) means an internal parameter for Japanese type-
setting, and it is used as a key in \1tjsetparameter command.

e A word in typewriter font with underline (like fontspec) means a package or a class of KTEX.

e The word ‘primitive’ is used not only for primitives in LuaTgX, but also for control sequences that
defined in the core module of LuaTgX-ja.

e In this document, natural numbers start from O.

1.4 About the project

Project Wiki Project Wiki is under construction.

o http://sourceforge.jp/projects/luatex-ja/wiki/FrontPage’,28eny29 (English)

e http://sourceforge.jp/projects/luatex-ja/wiki/FrontPage (Japanese)

This project is hosted by SourceForge.JP.

Members
e Hironori KITAGAWA e Kazuki MAEDA e Takayuki YATO
e Yusuke KUROKI e Noriyuki ABE e Munehiro YAMAMOTO
e Tomoaki HONDA e Shuzaburo SAITO e MA Qiyuan

http://sourceforge.jp/projects/luatex-ja/wiki/FrontPage%28en%29
http://sourceforge.jp/projects/luatex-ja/wiki/FrontPage

2 Getting Started

2.1

Installation

To install the LuaTgX-ja package, you will need:

LuaTgX (version 0.65.0-beta or later) and its supporting packages.
If you are using TEX Live 2011 or current W32TEX, you don’t have to worry.

The source archive of LuaTgX-ja, of course:)
The filehook package.

The xunicode package, which version is just v0.981 (2011/09/09).
If you have the fontspec package, this xunicode package must be exist. But be careful about the
version; other versions may not work correctly with LuaTgX-ja.

The installation methods are as follows:

1.

2.2

2.3

Download the source archive.

At the present, LuaTgX-ja has no official release, so you have to retrieve the archive from the
repository. You can retrieve the Git repository via

$ git clone git://git.sourceforge. jp/gitroot/luatex-ja/luatexja.git
or download the archive of HEAD in the master branch from
http://git.sourceforge. jp/view?p=luatex-ja/luatexja.git;a=snapshot;h=HEAD;sf=tgzl

Note that the forefront of development may not be the master branch.

. Extract the archive. You will see src/ and several other sub-directories.

. Copy all the contents of src/ (except src/no_runtime/) into one of your TEXMF tree.

TEXMF/tex/luatex/luatexja/ is an example location. Files in src/no_runtime/ are not required
for the regular use, so you may simply remove src/no_runtime/.

. If mktexlsr is needed to update the file name database, make it so.

Cautions

The encoding of your source file must be UTF-8. No other encodings, such as EUC-JP or Shift-JIS,
are not supported.

Using in plain TEX

To use LuaTgX-ja in plain TEX, simply put the following at the beginning of the document:

\input luatexja.sty

This does minimal settings (like ptex.tex) for typesetting Japanese documents:

e The following 6 Japanese fonts are preloaded:

classification font name ‘10 pt’ ‘7T pt’ ‘5 pt’
mincho Ryumin-Light \tenmin \sevemnmin \fivemin
gothic GothicBBB-Medium \tengt \sevengt \fivegt

— The ‘QOOLT is a unit used in Japanese phototypesetting, and 1 Q = 0.25 mm. This length is
stored in a dimension \jQ.

http://git.sourceforge.jp/view?p=luatex-ja/luatexja.git;a=snapshot;h=HEAD;sf=tgz

— It is widely accepted that the font ‘Ryumin-Light’” and ‘GothicBBB-Medium’ aren’t embedded
into PDF files, and PDF reader substitute them by some external Japanese fonts (e.g., Kozuka
Mincho is used for Ryumin-Light in Adobe Reader). We adopt this custom to the default
setting.

— A character in an alphabetic font is generally smaller than a Japanese font in the same size.

So actual size specification of these Japanese fonts is in fact smaller than that of alphabetic
fonts, namely scaled by 0.962216.

¢ The amount of glue that are inserted between a JAchar and an ALchar (the parameter xkanjiskip)

is set to

(0.25 - 0.962216 - 10pt) | Py = 2.40554 pt] Py

2.4 Using in BTEX

IATEX 2¢ Using in I¥TEX 2¢ is basically same. To set up the minimal environment for Japanese, you
only have to load luatexja.sty:

\usepackage{luatexja}

It also does minimal settings (counterparts in pIATEX are plfonts.dtx and pldefs.ltx):

o JY3 is the font encoding for Japanese fonts (in horizontal direction).
When vertical typesetting is supported by LuaTgX-ja in the future, JT3 will be used for vertical
fonts.

e Two font families mc and gt are defined:

classification family \mdseries \bfseries scale
mincho mc Ryumin-Light GothicBBB-Medium 0.962216
gothic gt GothicBBB-Medium GothicBBB-Medium 0.962216

Remark that the bold series in both family are same as the medium series of gothic family. This is
a convention in pIATEX. This is a trace that there were only 2 fonts (these are Ryumin-Light and
GothicBBB-Medium) in early years of DTP.

o Japanese characters in math mode are typeset by the font family mc.

However, above settings are not sufficient for Japanese-based documents. To typeset Japanese-based
documents, you are better to use class files other than article.cls, book.cls, and so on. At the present,
we have the counterparts of jclasses (standard classes in pIATEX) and jsclasses (classes by Haruhiko
Okumura), namely, 1tjclasses and ltjsclasses.

\CID, \UTF and macros in OTF package Under pATEX, otf package (developed by Shuzaburo
Saito) is used for typesetting characters which is in Adobe-Japanl-6 CID but not in JIS X 0208. Since
this package is widely used, LuaTEX-ja supports some of functions in otf package. If you want to use
these functions, load luatexja-otf package.

1 O\UTF{9DD7} 00O O O\UTF{9592} (1 CI\UTF{9AD

grOOonodnoao
) } gobogooooogoogoodn

5 \CID{7652} (111\CID{13706} 11] nooooooonooooon
, 0000000

2.5 Changing Fonts

Remark: Japanese Characters in Math Mode Since pTEX supports Japanese characters in math
mode, there are sources like the following;:

1$£_{000}$~($f_{\text{high temperature}}$). fon (fuign temperature)-

2\[y=(x-1)"2+2\quad JO00\quad y>0 \] 132

3$5\in [J:=\{\,p\in\mathbb N:\text{p is a y=(@-1)7+2 OO0 y>0
prime}\,\}$. 5€0:={peN:pisa prime}.

We (the project members of LuaTgX-ja) think that using Japanese characters in math mode are allowed

if and only if these are used as identifiers. In this point of view,

e Thelines 1 and 2 above are not correct, since ‘CJ[1" in above is used as a textual label, and ‘1
is used as a conjunction.

o However, the line 3 is correct, since ‘1’ is used as an identifier.

Hence, in our opinion, the above input should be corrected as:

1f_{OOO}~7% f Fui
2 ($f_{\text{high temperature}}$). 0o (high temperamre).

3\ [y=(x-1)"2+2\quad B 5
+ \mathrel{\text{CJJ[1}}\quad y>0 \] y=(@-1)"+2 DOOO y>0

5$5\in [J:=\{\,p\in\mathbb N:\text{p is a . o .
prime}\,\}$. 5€U0:={peN:pisaprime}.
We also believe that using Japanese characters as identifiers is rare, hence we don’t describe how to
change Japanese fonts in math mode in this chapter. For the method, please see Subsection

plain TEX To change Japanese fonts in plain TEX, you must use the primitive \jfont. So please see
Subsection

NFSS2 For ITEX 2¢, LuaTEX-ja adopted most of the font selection system of pIATEX 2¢ (in plfonts.dtx).

¢ Two control sequences \mcdefault and \gtdefault are used to specify the default font families for
mincho and gothic, respectively. Default values: mc for \mcdefault and gt for \gtdefault.

e Commands \fontfamily, \fontseries, \fontshape and \selectfont can be used to change
attributes of Japanese fonts.

encoding family series shape selection

alphabetic fonts \romanencoding \romanfamily \romanseries \romanshape \useroman

Japanese fonts \kanjiencoding \kanjifamily \kanjiseries \kanjishape \usekanji
both — - \fontseries \fontshape —

auto select \fontencoding \fontfamily — — \usefont

\fontencoding{<encoding>} changes the encoding of alphabetic fonts or Japanese fonts depending
on the argument. For example, \fontencoding{JY3} changes the encoding of Japanese fonts to
JY3 and \fontencoding{T1} changes the encoding of alphabetic fonts to T1. \fontfamily also
changes the family of Japanese fonts, alphabetic fonts, or both. For detail, see Subsection

e For defining a Japanese font family, use \DeclareKanjiFamily instead of \DeclareFontFamily.
However, in the present implementation, using \DeclareFontFamily doesn’t cause any problem.

2.6 fontspec

To coexist with the fontspec package, it is needed to load luatexja-fontspec package in the preamble.
This additional package automatically loads luatexja and fontspec package, if needed.

In luatexja-fontspec package, the following 7 commands are defined as counterparts of original
commands in the fontspec package:

Japanese fonts \jfontspec \setmainjfont \setsansjfont \newjfontfamily
alphabetic fonts \fontspec \setmainfont \setsansfont \newfontfamily

Japanese fonts \newjfontface \defaultjfontfeatures \addjfontfeatures
alphabetic fonts \newfontface \defaultfontfeatures \addfontfeatures

1 \fontspec [Numbers=01dStyle] {TeX Gyre Termes}
2\jfontspec{IPAexMincho}

3 JIS~X~0213:2004 - [JIS X 0213:2004 =it
4 JIS X 0208:1990 =it

s \addjfontfeatures{CJKShape=JIS1990}
6 JIS~X~0208:1990 - []

Note that there is no command named \setmonojfont, since it is popular for Japanese fonts that
nearly all Japanese glyphs have same widths. Also note that the kerning feature is set off by default in
these 7 commands, since this feature and JAglue will clash (see [4.1)).

3 Changing Parameters

There are many parameters in LuaTEX-ja. And due to the behavior of LuaTEX, most of them are not
stored as internal register of TEX, but as an original storage system in LuaTgX-ja. Hence, to assign or
acquire those parameters, you have to use commands \1tjsetparameter and \ltjgetparameter.

3.1 Editing the range of JAchars

To edit the range of JAchars, you have to assign a non-zero natural number which is less than 217 to
the character range first. This can be done by using \1tjdefcharrange primitive. For example, the next
line assigns whole characters in Supplementary Ideographic Plane and the character ‘]’ to the range
number 100.

\1tjdefcharrange{100}{"10000-"1FFFF, " [}

This assignment of numbers to ranges are always global, so you should not do this in the middle of a
document.

If some character has been belonged to some non-zero numbered range, this will be overwritten by
the new setting. For example, whole SIP belong to the range 4 in the default setting of LuaTgX-ja, and
if you specify the above line, then SIP will belong to the range 100 and be removed from the range 4.

After assigning numbers to ranges, the jacharrange parameter can be used to customize which character
range will be treated as ranges of JAchars, as the following line (this is just the default setting of

LuaTgX-ja):
\1ltjsetparameter{jacharrange={-1, +2, +3, -4, -5, +6, +7, +8}}

The argument to jacharrange parameter is a list of integer. Negative integer —n in the list means that
‘the characters that belong to range n are treated as ALchar’, and positive integer +n means that ‘the
characters that belong to range n are treated as JAchar’.

Table 1. Unicode blocks in predefined character range 3.

U+2000-U+206F General Punctuation
U+20A0-U+20CF Currency Symbols
U+2100-U+214F Letterlike Symbols
U+2190-U+21FF Arrows

U+2300-U+23FF Miscellaneous Technical
U+2500-U+257F Box Drawing

U+25A0-U+25FF Geometric Shapes
U+2700-U+27BF Dingbats

U+2980-U+29FF Misc. Mathematical Symbols-B
U+EO00-U+F8FF Private Use Area

U+2070-U+209F
U+20D0-U+20FF
U+2150-U+218F
U+2200-U+22FF
U+2400-U+243F
U+2580-U+259F
U+2600-U+26FF
U+2900-U+297F
U+2B0O0-U+2BFF

Superscripts and Subscripts

Comb. Diacritical Marks for Symbols
Number Forms

Mathematical Operators

Control Pictures

Block Elements

Miscellaneous Symbols

Supplemental Arrows-B
Miscellaneous Symbols and Arrows

Default Setting LuaTgX-ja predefines eight character ranges for convenience. They are determined

from the following data:

e Blocks in Unicode 6.0.

e The Adobe-Japan1-UCS2 mapping between a CID Adobe-Japanl-6 and Unicode.

e The PXbase bundle for upTEX by Takayuki Yato.

Now we describe these eight ranges. The alphabet ‘J” or ‘A’ after the number shows whether characters
in the range is treated as JAchars or not by default. These settings are similar to the prefercjk settings

defined in PXbase bundle.

Range 8’ Symbols in the intersection of the upper half of ISO 8859-1 (Latin-1 Supplement) and
JIS X 0208 (a basic character set for Japanese). This character range consists of the following

characters:

o 8 (U+00A7, Section Sign)
~” (U+00A8, Diaeresis)

< (U+00BO, Degree sign)
(

e = (U+00B1, Plus-minus sign)

“
. T (
> (
= (

U+00B4, Spacing acute)
U+00B6, Paragraph sign)
U+00D7, Multiplication sign)
U+00F7, Division Sign)

Range 1A Latin characters that some of them are included in Adobe-Japanl-6. This range consist of
the following Unicode ranges, except characters in the range 8 above:

e U+0080-U+00FF: Latin-1 Supplement
e U+0100-U+017F: Latin Extended-A
e U+0180-U+024F: Latin Extended-B

e U+0250-U+02AF: IPA Extensions

e U+0300-U+036F: Combining Diacritical

Marks

e U+1E00-U+1EFF: Latin Extended Addi-

tional

e U+02BO-U+02FF: Spacing Modifier Letters

Range 27 Greek and Cyrillic letters. JIS X 0208 (hence most of Japanese fonts) has some of these

characters.

e U+0370-U+03FF: Greek and Coptic
o U+0400-U+04FF: Cyrillic

e U+1F00-U+1FFF: Greek Extended

Range 37 Punctuations and Miscellaneous symbols. The block list is indicated in Table

Range 4 Characters usually not in Japanese fonts. This range consists of almost all Unicode blocks
which are not in other predefined ranges. Hence, instead of showing the block list, we put the

definition of this range itself:

Table 2. Unicode blocks in predefined character range 6.

U+2460-U+24FF Enclosed Alphanumerics U+2E80—U+2EFF CJK Radicals Supplement
U+3000-U+303F CJK Symbols and Punctuation U+3040-U+309F Hiragana

U+30A0-U+30FF Katakana U+3190-U+319F Kanbun

U+31F0-U+31FF Katakana Phonetic Extensions U+3200-U+32FF Enclosed CJK Letters and Months
U+3300-U+33FF CJK Compatibility U+3400-U+4DBF CJK Unified Ideographs Extension A
U+4E00-U+9FFF CJK Unified Ideographs U+F900-U+FAFF CJK Compatibility Ideographs
U+FE10-U+FE1F Vertical Forms U+FE30-U+FE4F CJK Compatibility Forms
U+FES0-U+FE6F Small Form Variants U+20000-U+2FFFF (Supplementary Ideographic Plane)

Table 3. Unicode blocks in predefined character range 7.

U+1100-U+11FF Hangul Jamo U+2F00-U+2FDF Kangxi Radicals
U+2FFO-U+2FFF Ideographic Description Characters U+3100-U+312F Bopomofo

U+3130-U+318F Hangul Compatibility Jamo U+31A0-U+31BF Bopomofo Extended
U+31C0-U+31EF CJK Strokes U+A000-U+A48F Yi Syllables

U+A490-U+A4CF Yi Radicals U+A830-U+A83F Common Indic Number Forms
U+ACO0—U+D7AF Hangul Syllables U+D7BO-U+D7FF Hangul Jamo Extended-B

\1tjdefcharrange{4}{/
"500-"10FF, "1200-"1DFF, "2440-"245F, "27CO-"28FF, "2A00-"2AFF,
"2C00-"2E7F, "4DCO-"4DFF, "A4DO-"A82F, "A840-"ABFF, "FB50-"FEOF,
"FE20-"FE2F, "FE70-"FEFF, "FBOO-"FB4F, "10000-"1FFFF} J, non-Japanese

Range 5 Surrogates and Supplementary Private Use Areas.
Range 67 Characters used in Japanese. The block list is indicated in Table

Range 77 Characters used in CJK languages, but not included in Adobe-Japanl-6. The block list is
indicated in Table

3.2 kanjiskip and xkanjiskip

JAglue is divided into the following three categories:

o Glues/kerns specified in JEM. If \inhibitglue is issued around a Japanese character, this glue
will not be inserted at the place.

e The default glue which inserted between two JAchars (kanjiskip).
o The default glue which inserted between a JAchar and an ALchar (xkanjiskip).

The value (a skip) of kanjiskip or xkanjiskip can be changed as the following.

\1tjsetparameter{kanjiskip={Opt plus 0.4pt minus 0.4pt},
xkanjiskip={0.25\zw plus 1pt minus 1pt}}

It may occur that JFM contains the data of ‘ideal width of kanjiskip’ and/or ‘ideal width of xkanjiskip’.
To use these data from JFM, set the value of kanjiskip or xkanjiskip to \maxdimen.

3.3 Insertion Setting of xkanjiskip

It is not desirable that xkanjiskip is inserted into every boundary between JAchars and ALchars. For
example, xkanjiskip should not be inserted after opening parenthesis (e.g., compare ‘(00 and ‘([I’).
LuaTgX-ja can control whether xkanjiskip can be inserted before/after a character, by changing jaxspmode
for JAchars and alxspmode parameters ALchars respectively.

10

1\1tjsetparameter{jaxspmode={"J,preonly},
alxspmode={"\!,postonly}} pOq OO
2pllq OO

The second argument preonly means ‘the insertion of xkanjiskip is allowed before this character, but
not after’. the other possible values are postonly, allow and inhibit.

jaxspmode and alxspmode use a same table to store the parameters on the current version. Therefore,
line 1 in the code above can be rewritten as follows:

\1tjsetparameter{alxspmode={ [J,preonly}, jaxspmode={ \!,postonly}}

One can use also numbers to specify these two parameters (see Subsection [5.2)).

If you want to enable/disable all insertions of kanjiskip and xkanjiskip, set autospacing and autoxspacing
parameters to true/false, respectively.

3.4 Shifting Baseline

To make a match between a Japanese font and an alphabetic font, sometimes shifting of the baseline
of one of the pair is needed. In pTEX, this is achieved by setting \ybaselineshift to a non-zero
length (the baseline of alphabetic fonts is shifted below). However, for documents whose main language
is not Japanese, it is good to shift the baseline of Japanese fonts, but not that of alphabetic fonts.
Because of this, LuaTEX-ja can independently set the shifting amount of the baseline of alphabetic fonts
(yalbaselineshift parameter) and that of Japanese fonts (yjabaselineshift parameter).

1\vrule width 150pt height 0.4pt depth Opt\

hskip-120pt
2\1tjsetparameter{yjabaselineshift=0pt,

yalbaselineshift=Opt}abc]]C] abe Bl e
s3\1ltjsetparameter{yjabaselineshift=5pt,

yalbaselineshift=2pt}abc[]1]

Here the horizontal line in above is the baseline of a line.

There is an interesting side-effect: characters in different size can be vertically aligned center in a
line, by setting two parameters appropriately. The following is an example (beware the value is not well
tuned):

1xyzOO

2{\scriptsize

3 \ltjsetparameter{yjabaselineshift=-1pt,
4 yalbaselineshift=-1pt}

s XyzOOOO

6 yYabc[

xyz (10 XYz 0000 abe (100

3.5 Cropmark

Cropmark is a mark for indicating 4 corners and horizontal/vertical center of the paper. In Japanese, we
call cropmark as tombo(w). pIATEX and this LuaTgX-ja support ‘tombow’ by their kernel. The following
steps are needed to typeset cropmark:

1. First, define the banner which will be printed at the upper left of the paper. This is done by
assigning a token list to \@bannertoken.

For example, the following sets banner as ‘filename (YYYY-MM-DD hh:mm)’:
\makeatletter

\hour\time \divide\hour by 60 \@tempcnta\hour \multiply\@tempcnta 60\relax
\minute\time \advance\minute-\@tempcnta
\@bannertoken{}
\jobname\space (\number\year-\two@digits\month-\two@digits\day
\space\two@digits\hour:\two@digits\minute)}%

11

Part 11
Reference

4 Font Metric and Japanese Font

4.1 \jfont primitive

To load a font as a Japanese font, you must use the \jfont primitive instead of \font, while \jfont
admits the same syntax used in \font. LuaTgX-ja automatically loads luaotfload package, so True-
Type/OpenType fonts with features can be used for Japanese fonts:

1\jfont\tradgt={file:ipaexg.ttf:script=latn;/

2 +trad;-kern;jfm=ujis} at 14pt %/%/%/E

s\tradgt{3O0O0O00O00O0O0O

Note that the defined control sequence (\tradgt in the example above) using \jfont is not a font_def
token, hence the input like \fontname\tradgt causes a error. We denote control sequences which are
defined in \jfont by (jfont_cs).

JFM As noted in Introduction, a JEM has measurements of characters and glues/kerns that are auto-
matically inserted for Japanese typesetting. The structure of JEM will be described in the next subsection.
At the calling of \ jfont primitive, you must specify which JFM will be used for this font by the following
keys:

jfm=(name) Specify the name of JEM. If specified JEM has not been loaded, LuaTgX-ja search and
load a file named jfm-{name).lua.

The following JFMs are shipped with LuaTgX-ja:

jfm-ujis.lua A standard JFM in LuaTgX-ja. This JEM is based on upnmlminr-h.tfm, a metric
for UTF/OTF package that is used in upTEX. When you use the luatexja-otf package,
you should use this JEM.

jfm-jis.lua A counterpart for jis.tfm, ‘JIS font metric’ which is widely used in pTEX. A
major difference of jfm-ujis.lua and this jfm-jis.lua is that most characters under
jfm-ujis.lua are square-shaped, while that under jfm-jis.lua are horizontal rectangles.

jfm-min.lua A counterpart for min10.tfm, which is one of the default Japanese font metric
shipped with pTEX. There are notable difference between this JEM and other 2 JFMs, as
shown in Table [4]

jfmvar=(string) Sometimes there is a need that ...

Note: kern feature Some fonts have information for inter-glyph spacing. However, this information
is not well-compatible with LuaTgX-ja. More concretely, this kerning space from this information are
inserted before the insertion process of JAglue, and this causes incorrect spacing between two characters
when both a glue/kern from the data in the font and it from JFM are present.

¢ You should specify -kern in jfont primitive, when you want to use other font features, such as
script=....

e If you want to use Japanese fonts in proportional width, and use information from this font, use
jfm-prop.lua for its JFM, and ...
TODO: kanjiskip?
Mrom: 0000, minl0 DOOOOOOO. http://argent.shinshu-u.ac.jp/ otobe/tex/files/min10.pdf.
12

Table 4. Differences between JFMs shipped with LuaTEX-ja

jfm-ujis.lua jfm-jis.lua jfm-min.lua

oD dobooodo oot
OdOOooOodo goodoony oo n
OOooooog OOoooood OOoodddd
OOoOoOoOooo oboodo oo oni
OO0 Lot Lot

Example 2 [ICICICIE] [HiENINEn HiNEEIEN
Bounding Box I:l I:I I:l

=

Example 1

4.2 Prefix psft

Besides file: and name: prefixes, one can use psft: prefix in \jfont (and \font) primitive, to specify
a ‘name-only’ Japanese font which will not be embedded to PDF. Typical use of this prefix is to specify
the ‘standard’ Japanese fonts, namely, ‘Ryumin-Light’ and ‘GothicBBB-Medium’. For kerning or other
information, that of Kozuka Mincho Pr6N Regular (this is a font by Adobe Inc., and included in Japanese
Font Packs for Adobe Reader) will be used.

cid key cid key, ...

4.3 Structure of JFM file
A JFM file is a Lua script which has only one function call:
luatexja.jfont.define_jfm { ... }

Real data are stored in the table which indicated above by { ... }. So, the rest of this subsection are
devoted to describe the structure of this table. Note that all lengths in a JFM file are floating-point
numbers in design-size unit.

dir=(direction) (required)

The direction of JEM. At the present, only 'yoko' is supported.

zw=(length) (required)
The amount of the length of the ‘full-width’.

zh=(length) (required)
The amount of the length of the ‘full-height’ (height 4+ depth).

kanjiskip={(natural), (stretch), (shrink)} (optional)

This field specifies the ‘ideal” amount of kanjiskip. As noted in Subsection if the parameter
kanjiskip is \maxdimen, the value specified in this field is actually used (if this field is not specified
in JFM, it is regarded as 0 pt). Note that (stretch) and (shrink) fields are in design-size unit too.

xkanjiskip={(natural), (stretch), (shrink)} (optional)
Like the kanjiskip field, this field specifies the ‘ideal’ amount of xkanjiskip.
Besides from above fields, a JFM file have several sub-tables those indices are natural numbers. The
table indexed by i € w stores information of ‘character class’ i. At least, the character class 0 is always

present, so each JFM file must have a sub-table whose index is [0]. Each sub-table (its numerical index
is denoted by 7) has the following fields:

13

Consider a node containing Japanese character whose value of

Iy the align field is 'middle’.

e The black rectangle is a frame of the node. Its width,

height height and depth are specified by JFM.
e Since the align field is 'middle', the ‘real’ glyph is cen-

width | tered horizontally (the green rectangle).

down

ot :: depth e Furthermore, the glyph is shifted according to values of
T y fields 1left and down. The ultimate position of the real

0 glyph is indicated by the red rectangle.

Figure 1. The position of the ‘real’ glyph.
chars={(character), ...} (required except character class 0)

This field is a list of characters which are in this character type ¢. This field is not required if
i = 0, since all JAchar which are not in any character class other than 0 are in the character
class 0 (hence, the character class 0 contains most of JAchars). In the list, a character can be
specified by its code number, or by the character itself (as a string of length 1). Moreover, there
are ‘imaginary characters’ which specified in the list. We will describe these later.

width=(length), height=(length), depth=(length), italic=(length) (required)

Specify width of characters in character class 4, height, depth and the amount of italic correction.
All characters in character class i are regarded that its width, height and depth are as values of
these fields. But there is one exception: if 'prop' is specified in width field, width of a character
becomes that of its ‘real’ glyph

left=(length), down=(length), align=(align)

These fields are for adjusting the position of the ‘real’ glyph. Legal values of align field are
'left', 'middle' and 'right'. If one of these 3 fields are omitted, left and down are treated
as 0, and align field is treated as 'left'. The effects of these 3 fields are indicated in Figure

In most cases, left and down fields are 0, while it is not uncommon that the align field is
'middle' or 'right'. For example, setting the align field to 'right' is practically needed
when the current character class is the class for opening delimiters’.

kern={[jl=(kern), ...}

glue={[jl1={(width), (stretch), (shrink)}, ...}

As described before, you can specify several ‘imaginary characters’ in chars field. The most of
these characters are regarded as the characters of class 0 in pTEX. As a result, LuaTEX-ja can control
typesetting finer than pTEX. The following is the list of ‘imaginary characters’:

'lineend' An ending of a line.

'diffmet' Used at a boundary between two JAchars whose JEM or size is different.

'boxbdd' The beginning/ending of a horizontal box, and the beginning of a noindented paragraph.

'parbdd' The beginning of an (indented) paragraph.

'jcharbdd' A boundary between JAchar and anything else (such as ALchar, kern, glue, ...).

-1

The left/right boundary of an inline math formula.

Porting JFM from pTEX

14

Table 5. Primitives for Japanese math fonts.

Japanese fonts alphabetic fonts
font family \jfam € [0, 256) \fam
text size jatextfont ={(jfam) , (jfont_cs)} \textfont(fam)=(font_cs)
script size jascriptfont ={(jfam), (jfont_cs)} \scriptfont(fam)=(font_cs)

scriptscript size jascriptscriptfont ={{jfam) , (jfont _cs)} \scriptscriptfont(fam)=(font cs)

4.4 Math Font Family

TEX handles fonts in math formulas by 16 font familiesEl7 and each family has three fonts: \textfont,
\scriptfont and \scriptscriptfont.

LuaTgX-ja’s handling of Japanese fonts in math formulas is similar; Table [5| shows counterparts to
TEX’s primitives for math font families. There is no relation between the value of \fam and that of \ jfam;
with appropriate settings, you can set both \fam and \jfam to the same value.

4.5 Callbacks

Like LuaTgX itself, LuaTEX-ja also has callbacks. These callbacks can be accessed via luatexbase.add_to_callback
function and so on, as other callbacks.

luatexja.load_jfm callback With this callback you can overwrite JFMs. This callback is called when
a new JFM is loaded.

1 function (<table> jfm_info, <string> jfm_name)
2 return <table> new_jfm_info
3 end

The argument jfm_info contains a table similar to the table in a JFM file, except this argument
has chars field which contains character codes whose character class is not 0.

An example of this callback is the 1tjarticle class, with forcefully assigning character class 0 to
'parbdd' in the JFM jfm-min.lua. This callback doesn’t replace any code of LuaTgX-ja.

luatexja.define_font callback This callback and the next callback form a pair, and you can as-
sign letters which don’t have fixed code points in Unicode to non-zero character classes. This
luatexja.define_font callback is called just when new Japanese font is loaded.

1 function (<table> jfont_info, <number> font_number)
2 return <table> new_jfont_info
3 end

You may assume that jfont_info has the following fields:

jfm The index number of JFM.

size Font size in a scaled point (= 2716 pt).

var The value specified in jfmvar=... at a call of \jfont.

The returned table new_jfont_info also should include these three fields. The font_number is a
font number.

A good example of this and the next callbacks is the luatexja-otf package, supporting "AJ1-xxx"
form for Adobe-Japanl CID characters in a JFM. This callback doesn’t replace any code of

LuaTgX-ja.

luatexja.find_char_class callback This callback is called just when LuaTgX-ja is trying to determine
which character class a character chr_code belongs. A function used in this callback should be in
the following form:

20mega, Aleph, LuaTEX and e-(u)pTEX can handles 256 families, but an external package is needed to support this in
plain TEX and IATEX.
15

function (<number> char_class, <table> jfont_info, <number> chr_code)
if char_class~=0 then return char_class
else

return (<number> new_char_class or 0)
end
end

N O Uk W N

The argument char_class is the result of LuaTEX-ja’s default routine or previous function calls in
this callback, hence this argument may not be 0. Moreover, the returned new_char_class should
be as same as char_class when char_class is not 0, otherwise you will overwrite the LuaTgX-ja’s
default routine.

This callback doesn’t replace any code of LuaTgX-ja.
luatexja.set_width callback This callback is called when LuaTEX-ja is trying to encapsule a JAchar
glyph__node, to adjust its dimension and position.

1 function (<table> shift_info, <table> jfont_info, <number> char_class)
return <table> new_shift_info
3 end

The argument shift_info and the returned new_shift_info have down and left fields, which are
the amount of shifting down/left the character in a scaled-point.

A good example is test/valign.lua. After loading this file, the vertical position of glyphs is
automatically adjusted; the ratio (height : depth) of glyphs is adjusted to be that of letters in the
character class 0. For example, suppose that

o The setting of the JFM: (height) = 88z, (depth) = 12z (the standard values of Japanese
OpenType fonts);

e The value of the real font: (height) = 28y, (depth) = 5y (the standard values of Japanese
TrueType fonts).

Then, the position of glyphs is shifted up by

88x

26 .

825

5 Parameters

5.1 \ltjsetparameter primitive

As noted before, \1t jsetparameter and \1tjgetparameter are primitives for accessing most parameters
of LuaTgX-ja. One of the main reason that LuaTEX-ja didn’t adopted the syntax similar to that of pTEX
(e.g., \prebreakpenalty [1=10000) is the position of hpack_filter callback in the source of LuaTgX,
see Section [0

\1ltjsetparameter and \ltjglobalsetparameter are primitives for assigning parameters. These
take one argument which is a (key)=(value) list. Allowed keys are described in the next subsection. The
difference between \ltjsetparameter and \ltjglobalsetparameter is only the scope of assignment;
\1ltjsetparameter does a local assignment and \1tjglobalsetparameter does a global one. They also
obey the value of \globaldefs, like other assignment.

\1ltjgetparameter is the primitive for acquiring parameters. It always takes a parameter name as
first argument, and also takes the additional argument—a character code, for example—in some cases.

1\1ltjgetparameter{differentjfm},
2\1tjgetparameter{autospacing}, average, 1, 10000.
3\1tjgetparameter{prebreakpenalty}{ [}.

The return value of \ltjgetparameter is always a string. This is outputted by tex.write(), so
any character other than space ¢ ' (U+0020) has the category code 12 (other), while the space has
10 (space).

16

5.2 List of Parameters

The following is the list of parameters which can be specified by the \1tjsetparameter command. [\cs]
indicates the counterpart in pTEX, and symbols beside each parameter has the following meaning;:

o No mark: values at the end of the paragraph or the hbox are adopted in the whole paragraph/hbox.
e ‘«”: local parameters, which can change everywhere inside a paragraph/hbox.

e ‘’: assignments are always global.

jcharwidowpenalty =(penalty) [\jcharwidowpenalty] Penalty value for suppressing orphans. This penalty
is inserted just after the last JAchar which is not regarded as a (Japanese) punctuation mark.

kcatcode ={{chr__code) , (natural number)} An additional attributes which each character whose char-
acter code is (chr_code) has. At the present version, the lowermost bit of (natural number)
indicates whether the character is considered as a punctuation mark (see the description of jchar-
widowpenalty above).

prebreakpenalty ={(chr__code), (penalty)} [\prebreakpenalty]
postbreakpenalty ={{chr__code) , (penalty)} [\postbreakpenalty]
jatextfont ={(jfam), (jfont_cs)} [\textfont in TEX]

jascriptfont ={ (jfam) , (jfont_cs)} [\scriptfont in TEX]
jascriptscriptfont ={{(jfam), (jfont_cs)} [\scriptscriptfont in TEX]
yjabaselineshift ={dimen)*

yalbaselineshift =(dimen)* [\ybaselineshift]

jaxspmode ={(chr__code) , (mode)} Setting whether inserting xkanjiskip is allowed before/after a JAchar
whose character code is (chr_code). The followings are allowed for (mode):
0, inhibit Insertion of xkanjiskip is inhibited before the character, nor after the character.
1, preonly Insertion of xkanjiskip is allowed before the character, but not after.
2, postonly Insertion of xkanjiskip is allowed after the character, but not before.
3, allow Insertion of xkanjiskip is allowed both before the character and after the character. This

is the default value.

This parameter is similar to the \inhibitxspcode primitive of pTEX, but not compatible with
\inhibitxspcode.
alxspmode ={(chr__code), (mode)} [\xspcode]
Setting whether inserting xkanjiskip is allowed before/after a ALchar whose character code is
(chr_code). The followings are allowed for (mode):
0, inhibit Insertion of xkanjiskip is inhibited before the character, nor after the character.
1, preonly Insertion of xkanjiskip is allowed before the character, but not after.
2, postonly Insertion of xkanjiskip is allowed after the character, but not before.
3, allow Insertion of xkanjiskip is allowed before the character and after the character. This is

the default value.

Note that parameters jaxspmode and alxspmode use a common table, hence these two parameters
are synonyms of each other.

autospacing =(bool)* [\autospacing]
autoxspacing =(bool)* [\autoxspacing]

kanjiskip =(skip) [\kanjiskip]
17

xkanjiskip =(skip) [\xkanjiskip]

differentjfm =(mode)! Specify how glues/kerns between two JAchars whose JFM (or size) are different.
The allowed arguments are the followings:

average
both
large

small
jacharrange =(ranges)*

kansujichar ={{digit), (chr_code)} [\kansujichar]

6 Other Primitives

6.1 Primitives for Compatibility
The following primitives are implemented for compatibility with pTEX:

\kuten
\jis
\euc
\sjis
\ucs

\kansuji

6.2 \inhibitglue primitive

The primitive \inhibitglue suppresses the insertion of JAglue. The following is an example, using a
special JEM that there will be a glue between the beginning of a box and ‘CJ’, and also between ‘[0’ and
‘.

1\jfont\g=psft:Ryumin-Light:jfm=test \g

2 \fbox{\hbox{(J[1[J\inhibitglue [1}} O dOdd

3\inhibitglue\par\noindent [J1 O 1
4\par\inhibitglue\noindent []2

s \par\noindent\inhibitglue [13 E% g
6 \par\inhibitglue\hrule [] off\inhibitglue 0 office

ice

With the help of this example, we remark the specification of \inhibitglue:

e The call of \inhibitglue in the (internal) vertical mode is effective at the beginning of the next
paragraph. This is realized by hacking \everypar.

e The call of \inhibitglue in the (restricted) horizontal mode is only effective on the spot; does
not get over boundary of paragraphs. Moreover, \inhibitglue cancels ligatures and kernings, as
shown in line 4 of above example.

e The call of \inhibitglue in math mode is just ignored.

18

7 Control Sequences for INTEX 2¢

7.1 Patch for NFSS2

As described in Subsection LuaTgX-ja simply adopted plfonts.dtx in pATEX 2¢ for the Japanese
patch for NFSS2. For an convenience, we will describe commands which are not described in Subsec-
tion

\DeclareYokoKanjiEncoding{(encoding) }{ (text-settings) } (math-settings)}

In NFSS2 under LuaTgX-ja, distinction between alphabetic font families and Japanese font families
are only made by their encodings. For example, encodings OT1 and T1 are for alphabetic font
families, and a Japanese font family cannot have these encodings. This command defines a new
encoding scheme for Japanese font family (in horizontal direction).

\DeclareKanjiEncodingDefaults{(text-settings)}{{math-settings)t
\DeclareKanjiSubstitution{(encoding)}{(family)}{ (series)}{(shape)}

\DeclareErrorKanjiFont{({encoding) }H(family) }(series)}{{shape) }{(size)}

The above 3 commands are just the counterparts for DeclareFontEncodingDefaults and others.
\reDeclareMathAlphabet{(unified-cmd)}{{al-cmd)}{(ja-cmd)}
\DeclareRelationFont{{ja-encoding) }{(ja-family) { (ja-series) Y {ja-shape)}

{{al-encoding) }{ { al-family) }{{al-series) }{(al-shape) }

This command sets the ‘accompanied’ alphabetic font family (given by the latter 4 arguments) with

respect to a Japanese font family given by the former 4 arguments.
\SetRelationFont

This command is almost same as \DeclareRelationFont, except that this command does a local

assignment, where \DeclareRelationFont does a global assignment.
\userelfont

Change current alphabetic font encoding/family/... to the ‘accompanied’ alphabetic font family with
respect to current Japanese font family, which was set by \DeclareRelationFont or \SetRelationFont.
Like \fontfamily, \selectfont is required to take an effect.

\adjustbaseline

\fontfamily{(family)}
As in IWTEX 2¢, this command changes current font family (alphabetic, Japanese, or both) to {family).
Which family will be changed is determined as follows:

o Let current encoding scheme for Japanese fonts be (ja-enc). Current Japanese font family will be
changed to (family), if one of the following two conditions is met:

— The family (fam) under the encoding (ja-enc) has been already defined by \DeclareKanijFamily.

— A font definition named (enc){ja-enc).fd (the file name is all lowercase) exists.

e Let current encoding scheme for alphabetic fonts be (al-enc). For alphabetic font family, the
criterion as above is used.

o There is a case which none of the above applies, that is, the font family named (family) doesn’t
seem to be defined neither under the encoding (ja-enc), nor under (al-enc). In this case, the default
family for font substitution is used for alphabetic and Japanese fonts. Note that current encoding
will not be set to (family), unlike the original implementation in KTEX.

As closing this subsection, we shall introduce an example of \SetRelationFont and \userelfont:

1\gtfamily{} O] abc

2\SetRelationFont{JY3}{gtHm}{n}{0T1}{pag}t{m
Hn}

3 \userelfont\selectfont{}[11[] abc

OO0 abe OOO abc

19

7.2 Cropmark/‘tombow’
8 Extensions

8.1 luatexja-fontspec.sty

As described in Subsection this optional package provides the counterparts for several commands
defined in the fontspec package1In addition to ‘font features’ in the original fontspec, the following
‘font features’ specifications are allowed for the commands of Japanese version:

JFM=(name)

JFM-var=(name) These 2 font features correspond to jfm and jfmvar keys for \jfont primitive, re-
spectively. See Subsection

NoEmbed By specifying this font feature, you can use ‘name-only’ Japanese font which will not be
embedded in the output PDF file. See Subsection [4.2

8.2 luatexja-otf.sty

This optional package supports typesetting characters in Adobe-Japanl. luatexja-otf.sty offers the
following 2 low-level commands:

\CID{(number)} Typeset a character whose CID number is (number).
\UTF{(hex_number)} Typeset a character whose character code is (hex number) (in hexadecimal).
This command is similar to \char"(hex_number), but please remind remarks below.
Remarks Characters by \CID and \UTF commands are different from ordinary characters in the fol-
lowing points:
o Always treated as JAchars.
o Processing codes for supporting OpenType features (e.g., glyph replacement and kerning) by the

luaotfload package is not performed to these characters.

Additional Syntax of JFM 1luatexja-otf.sty extends the syntax of JFM; the entries of chars
table in JEM now allows a string in the form 'AJ1-xxx', which stands for the character whose CID
number in Adobe-Japanl is xxx.

Part III
Implementations

9 Storing Parameters

9.1 Used Dimensions, Attributes and whatsit nodes

Here the following is the list of dimensions and attributes which are used in LuaTEX-ja.

\jQ (dimension) As explained in Subsection \jQ is equal to 1Q = 0.25mm, where ‘Q’ (also
called ‘[1") is a unit used in Japanese phototypesetting. So one should not change the value of
this dimension.

\jH (dimension) There is also a unit called ‘C1” which equals to 0.25 mm and used in Japanese photo-
typesetting. This \jH is a synonym of \jQ.

20

\1tjOzw (dimension) A temporal register for the ‘full-width’ of current Japanese font.

\1tjOzh (dimension) A temporal register for the ‘full-height’ (usually the sum of height of imaginary
body and its depth) of current Japanese font.

\jfam (attribute) Current number of Japanese font family for math formulas.
\1tj@curjfnt (attribute) The font index of current Japanese font.
\1tj@charclass (attribute) The character class of Japanese glyph node.

\1tj@yablshift (attribute) The amount of shifting the baseline of alphabetic fonts in scaled point
(2716 pt).

\1tj@ykblshift (attribute) The amount of shifting the baseline of Japanese fonts in scaled point
(2716 pt).

\1tj@autospc (attribute) Whether the auto insertion of kanjiskip is allowed at the node.
\1tj@autoxspc (attribute) Whether the auto insertion of xkanjiskip is allowed at the node.

\1tj@icflag (attribute) An attribute for distinguishing ‘kinds’ of a node. One of the following value
is assigned to this attribute:

italic (1) Glues from an italic correction (\/). This distinction of origins of glues (from explicit
\kern, or from \/) is needed in the insertion process of xkanjiskip.

packed (2)

kinsoku (3) Penalties inserted for the word-wrapping process of Japanese characters (kinsoku).

from__jfm (4) Glues/kerns from JFM.

line__end (5) Kerns for ...

kanji__skip (6) Glues for kanjiskip.

xkangi__skip (7) Glues for xkanjiskip.

processed (8) Nodes which is already processed by ...

ic__processed (9) Glues from an italic correction, but also already processed.

boxbdd (15) Glues/kerns that inserted just the beginning or the ending of an hbox or a para-
graph.

\1tj@kcati (attribute) Where ¢ is a natural number which is less than 7. These 7 attributes store
bit vectors indicating which character block is regarded as a block of JAchars.

Furthermore, LuaTEX-ja uses several ‘user-defined” whatsit nodes for typesetting. All those nodes
store a natural number (hence the node’s type is 100).

30111 Nodes for indicating that \inhibitglue is specified. The value field of these nodes doesn’t
matter.

30112 Nodes for LuaTEX-ja’s stack system (see the next subsection). The value field of these nodes is
current group.

30113 Nodes for Japanese Characters which the callback process of luaotfload won’t be applied, and
the character code is stored in the value field. Each node having this user_id is converted to a
‘elyph_node’ after the callback process of luaotfload.

These whatsits will be removed during the process of inserting JAglues.

21

9.2 Stack System of LuaTgX-ja

Background LuaTgX-ja has its own stack system, and most parameters of LuaTgEX-ja are stored in
it. To clarify the reason, imagine the parameter kanjiskip is stored by a skip, and consider the following
source:

1\1tjsetparameter{kanjiskip=0pt}O .7

2 \setbox0=\hbox{\1t jsetparameter{kanjiskip=5
pt}OOogd}

3\box0. O O\par

good.oo 0o o 4g.ogoo

As described in Subsection the only effective value of kanjiskip in an hbox is the latest value, so
the value of kanjiskip which applied in the entire hbox should be 5pt. However, by the implementation
method of LuaTgX, this ‘5 pt’ cannot be known from any callbacks. In the tex/packaging.w (which is
a file in the source of LuaTEX), there are the following codes:

void package(int c)

{
scaled h; /* height of box */
halfword p; /* first node in a box */
scaled d; /* max depth */
int grp;

grp = cur_group;
d = box_max_depth;
unsave() ;
save_ptr -= 4;
if (cur_list.mode_field == -hmode) {
cur_box = filtered_hpack(cur_list.head_field,
cur_list.tail_field, saved_value(1),
saved_level(1l), grp, saved_level(2));
subtype (cur_box) = HLIST_SUBTYPE_HBOX;

Notice that unsave is executed before filtered_hpack (this is where hpack_filter callback is executed):
so ‘bpt’ in the above source is orphaned at unsave, and hence it can’t be accessed from hpack_filter
callback.

The method The code of stack system is based on that in a post of Dev-luatex mailing listﬂ

These are two TEX count registers for maintaining information: \1tj@@stack for the stack level, and
\1tj@egroup@level for the TEX’s group level when the last assignment was done. Parameters are stored
in one big table named charprop_stack_table, where charprop_stack_table[i] stores data of stack
level i. If a new stack level is created by \1tjsetparameter, all data of the previous level is copied.

To resolve the problem mentioned in ‘Background’ above, LuaTgX-ja uses another thing: When a new
stack level is about to be created, a whatsit node whose type, subtype and value are 44 (user_defined),
30112, and current group level respectively is appended to the current list (we refer this node by
stack_flag). This enables us to know whether assignment is done just inside a hbox. Suppose that
the stack level is s and the TEX’s group level is t just after the hbox group, then:

o If there is no stack_flag node in the list of the hbox, then no assignment was occurred inside the
hbox. Hence values of parameters at the end of the hbox are stored in the stack level s.

o If there is a stack_flag node whose value is t + 1, then an assignment was occurred just inside the
hbox group. Hence values of parameters at the end of the hbox are stored in the stack level s+ 1.

o If there are stack_flag nodes but all of their values are more than ¢ 4 1, then an assignment was
occurred in the box, but it is done is ‘more internal’ group. Hence values of parameters at the end
of the hbox are stored in the stack level s.

Note that to work this trick correctly, assignments to \1tj@@stack and \1tj@@group@level have to be
local always, regardless the value of \globaldefs. This problem is resolved by using \directlua{tex.globaldefs=0}
(this assignment is local).

3 [Dev-luatex] tex.currentgrouplevel, a post at 2008/8/19 by Jonathan Sauer.
22

scan a cs

d:={3,4,6,7,8,11,12,13}, g¢:={1,2}, j:= (Japanese characters)
e Numbers represent category codes.

o Category codes 9 (ignored), 14 (comment) and 15 (invalid) are omitted in the above diagram.
Figure 2. State transitions of pTEX’s input processor.

10 Linebreak after Japanese Character

10.1 Reference: Behavior in pTEX

In pTEX, a line break after a Japanese character doesn’t emit a space, since words are not separated
by spaces in Japanese writings. However, this feature isn’t fully implemented in LuaTgX-ja due to the
specification of callbacks in LuaTgX. To clarify the difference between pTEX and LuaTgX, We briefly
describe the handling of a line break in pTEX, in this subsection.

pTEX’s input processor can be described in terms of a finite state automaton, as that of TEX in Sec-
tion 2.5 of [I]. The internal states are as follows:

e State N: new line
e State S: skipping spaces
e State M: middle of line

e State K: after a Japanese character

The first three states—N, S and M—are as same as TEX’s input processor. State K is similar to
state M, and is entered after Japanese characters. The diagram of state transitions are indicated in
Figure [2| Note that pTEX doesn’t leave state K after ‘beginning/ending of a group’ characters.

10.2 Behavior in LuaTgX-ja

States in the input processor of LuaTgX is the same as that of TEX, and they can’t be customized by any
callbacks. Hence, we can only use process_input_buffer and token_filter callbacks for to suppress
a space by a line break which is after Japanese characters.

However, token_filter callback cannot be used either, since a character in category code 5 (end-of-
line) is converted into an space token in the input processor. So we can use only the process_input_buffer
callback. This means that suppressing a space must be done just before an input line is read.

Considering these situations, handling of an end-of-line in LuaTgX-ja are as follows:

A character U+FFFFF (its category code is set to 14 (comment) by LuaTgX-ja) is appended
to an input line, before LuaTgX actually process it, if and only if the following two conditions
are satisfied:

23

1. The category code of the character (return) (whose character code is 13) is 5 (end-of-
line).

2. The input line matches the following ‘regular expression’:

(any char)*(JAchar)({catcode = 1} U {catcode = 2})*

Remark The following example shows the major difference from the behavior of pTEX:

1\1ltjsetparameter{autoxspacing=false}
2\1tjsetparameter{jacharrange={-6}}x[]
3y\ltjsetparameter{jacharrange={+6}}z[]
au

xyzUl u

o There is no space between ‘x’ and ‘y’, since the line 2 ends with a JAchar ‘[’ (this ‘[’ considered
as an JAchar at the ending of line 1).

o There is no space between ‘L1’ (in the line 3) and ‘u’, since the line 3 ends with an ALchar (the
letter ‘01 considered as an ALchar at the ending of line 2).

11 Insertion of JFM glues, kanjiskip and xkanjiskip

11.1 Overview

LvaTEX-ja OOOOOOOO0DOOOOOO0DOOpIEX OOOOO0O0DOO0OOpTEX ODOOOOOOO
oooooo

« JFM OOOOOODOOOODOOOoooooooooonoooooodoodt{char_node) OO
ooooOooooOood

« xkanjiskip O OOOOOOO0O0OOOO0O0O0OOOOOOOO0OOOOOOOO

o kanjiskip OOOOOOOOOOOOO0OOOOOO0ODOOOOOOODOOOOOOOOOOOO20O
O (char_node) OO OO kanjiskip OO OOOOOOOOOOO

OO000LuaTeX-ja OOOOOOOOOOOCOOOOOOOOOO0OOO0OOO0 JAglueOOO JFM O
OO OxkanjiskipOkanjiskip O 3 OO O OOOO0OOO0OOOOO0OOOODOOOOLwTEX OOOOOO
OoOoboooooboooooobooooooooooooboonooood

LuaTeX-ja OOOO JAglue OO OO OOOOO0OOOOOOOOOOOODOOOOOOOOOOOO
OOoOOoomboboooooooooooooooooooooooooonooooooooooooan
OOoOoO0ooooooooodDzoo0ooboo00odOddoob\vadjust Owhatsit OO OOOO
oooooooooooon

11.2 definition of a ‘cluster’

Definition 1. A cluster is a list of consecutive nodes in one of the following forms, with the id of it:

1. Nodes whose value of \1tj@icflag is in [3,15). These nodes come from a hbox which is already
packaged, by unpackaging (\unhbox). The id is id_pboz.

2. A inline math formula, including two math_nodes at the boundary of it. The id is id_ math.
3. A glyph_node p with nodes which relate with it:

(1) A kern for the italic correction of p.

(2) An accent attached to p by \accent.

24

(a)
glyph (®)

—
kern accent kern glyph kern
subtype = 2 — hhox — subtype = 2 — P — |italic corr.

accent (shifted vert.)

The id is id_jglyph or id__glyph, according to whether the glyph node represents a Japanese char-
acter or not.

4. An box-like node, that is, an hbox, a vbox, a rule (\vrule) and an unset_node. The id is id_ hlist
if the node is an hbox which is not shifted vertically, or id box_like otherwise.

5. A glue, a kern whose subtype is not 2 (accent), and a discretionary break. The id is id_glue,
id__kern and id__disc, respectively.

Let Np, Nq and Nr denote a cluster.

id OO0 Npqd OOOOOOOOOOOOODOOOOOOOOO glyph_node Np.head OOOOOOOONO
OO0 glyph_node Np.taidl OOOOOOO0O00OO00OO00OO00OOONp O Np.head OO0 Np.tadl 0
OO0O00O00O00O0O0O00O0O0O0OoOdOOOn Np.kead, Np.toidl OO OOOOO0OO0OO0OOOOOO
OO0 Lva OOOOOOCOOOOOOCOOOOOOOCOOOOOOCOOOOOO

id__jglyph OO0
Np.head, Np.tail OO OOOOOOOOOOOO glyph _node OO OOOONO

id__glyph OOOOOO0OOOOOO glyph__node pl
OOooOodop 0OooooooooooooOs oOO0O0oOooooogaod glyph_node OO
OO0O0000000000Np.head, Np.tail =p OO0OOOOC0OOC0OOOOO

o« Np.head OO DODOOOOOOOO-O00 glyph_node OOOOOO0OOOOOOOO0OO ~
OOoOO0O0O0DoOooooooOoOooOog glyph_node OODOO

e Np.last 0000000 -00-00000000000 glyph_node OO0

td__math OOOOOOOO
OOOO0OO0ONp.head, Np.tail OOOOOOOO0O -1 OOOOOO0OOOO

id__hlist OO0O0O0O0O000O00O0000O00O00000O
OOOOONp.head, Np.tadl OOOO0 p DOOOOOOOOOOOOOOOOOOOOOOO

- JOOOOOOOTEX OOOOO000O
\hbox{\hbox{abc}...\hbox{\loweript\hbox{xyz}}3}

OOO0OOp OO0OOO0 hbox DOODOOOOOOOOOOOOOOOOOOOOOOOONO
Np.head, Np.tail OO OO ODOO0O0O0OOO0OOO00O0OCOOOOOO0O0OOOOOOOOOOO
OOO00O0OOooOooOodddNp.read OOO0000 00000000000 Np.tail OO
OOO00O00O0000O00000O\Lowertpt\hbox{xyz} O OO OO OOOOOOO

 DOOOOOOOoOoOoooooooobooooooooooooooooooooonoodn
Ooobooobooonooooooooooooboooooonooooooooooaoon

. 000O00000000000000000 glyph_node 0000000000000 id_glyph
OoOo00oooO0000onooooooo

td__pbox OO DO OOOOOOOOOOODOOOOOOOOOOOOOOOOOOODOOOOOOODOO
O10000000000000000000+4d_hklkst OOOOOO Np.head, Np.tail OODOOOO

id__disc discretionary break (\discretionary{pre}{post}{nobreak}).
id__hlist OO O OO0 Np.head, Np.tail OOOOOO0O0O 3 OO0 nobreak 1 OO0 OO OOOONOMN
OoOooooooOooOooodooooooooooooooooooooooooo

td__box__like id_ hlist OO OO0 box O Oruled
OOOO0O0ONp.head, Np.tadl OO OOOO0O0O0O00O0OO0O0O2 000000000 O00OO0OOOO
OOOO0O0O0OONp.head, Np.tail OO0 nil OO0

0O 00000« ODOO0O0O0ONp.head, Np.tail OODOOOOOO
25

OoooOoOooooo oooOJrpM OOO0ooooooobooooooboooooddwd ooooooo
Oooooooobooooooooo 2 ooooooooooooooooooboooooonoooon
OOooOoooboooboooooooooooooooo vy d0ooooooooooooogomao
OO00O0O0O0O0O0O00O0O0O0OO0OOOd reed O lest OOOOOOOCOOOOOOCOOOO

O0A OOO00O00O000O00000000d4d O 4d__jglyph OO OO
id O id_pbox OO0 Np.head O JAchar O OCOCO

O0OB ODO0OO0O0O0OOoOoooooooooooooooooooooog A ooooooogoog
JFM OOOO0OOO00O000OO0OOxkanjiskip, kanjiskip OO0 OOO0O0OOO0OOOO
id O id__hlist (O id__disc OO OO Np.head OO JAchar OO OO0

OO0 OdOooooobooooooobooooboooooooboonooooono s 0ooooodno

o id [id_glyph OO0
e id O id math OOOO
o id [id_pbox [id__hlist O id__disc OO O OO Np.head OO ALchar(

O boxOOOODOOOOOOOOOOOO200000

o id O id_pbox O id_ hlist O id_disc OO O OO Np.head O glyph__node OO
e id O id boxr like OOIOO

11.3 OOobogobogoodgoodn

OOoooon Oooooooooobooobooobooobooooo Ny ooooooooooooodon
OOoOoOoooOooooooooooooooooooooonooooooonon

\parindent OOOOOOOOO (subtype = 3)00 subtype O 44 (user__defined) OO OO OO whatsit[

OOOO\parindent OO OOO0O0O0O0OO0O0OOOOO0OOOOOOCOOOOOOOOO
OOONy OOOO0O0 ¢ OOO0OOoOoOoooo

1. OOOO0O0O0OoOoOOo Np OOoo A OoOOoo

2. JOODOO0OOO0DOO0OOOOOO\parindent OOOOOOO0O0OOOO0OOOOOOOOOg O
OO00000'parbdd' OOOOO Np DOOOODOOOOOOOOOOO

3. OO0OO0OO0O0OOOneindent OOOOOOOOOOOOOOOOOOg OOOOOOO 'boxbdd' OO
OO0 Np OOODOO0O0O0DoOooooogd

OO0O000O g Oglve OOOODOOOOOOOOOOO Np ODOOOOOOOOOOOOOOOOOOO
OOoOO0O0O0O00O000O0o0nodg OO0O\penalty10000 OOOOOO

. D000000000000000000
. Np 0OOOO0O0000000000g O glued

Oooodono oooooooooooobooooooooooooboooooobooooboonooood
OOoOoOoooooooodnono Ng OOOOONg DOOOOOO "boxbdd ' OO OOOOOOOOOOO
OOoOoOoonNg OOOoO0oOooooooodn

OoO00O0O0oooooOoooO00O0O0O0OOOdd\penalty10000 O0\parfillskip OOOOOOO
OO0O0O0O0oOooO0oooOoOnO Np OO00O\Vparfillskip OOOOOOO0O0OOO0OOOOOOOOO
0010000000 Ng OOoOOo

1. OO N DOODOOOOOO0Olne-end [E] DODOOODOOOOOOOOOO
2. OO DD oDOO0O0000Od + DOoooooooooooooooodCcharwidowpenalty

oooooooooooboooooooooan

OOoO0O0OoooooOooddhesd O JAchar OO0 OOOO0OO0OO0OOO keatcode OOOOOHON
DDDDDDDDDDDDDDDDDDDDD@D

4{0000000OOkeatcode OOOOOOOOO JAchar 0000000000000 O0OOOkeatcode OOOOOOOOONO
jcharwidowpenalty OO OOOO0O0O0OO00

26

114 OOO0OOOO200000A0000O

OOoOoooooo2 0000o0o0O0ooddnNg O Np DOO0O0O0O000000O\vadjust Owhatsit O
Oooooooboooooooooooooooooog

(@)

cluster . penalty R . whatsit . cluster
Nq P Np

OO0O00ODOO000Oon () DOOOOO0O0OoOOooDoOoooooooooooooooooood
OOJFM OO0 OO0O00OOoOo 2 oooooooooogoog

(a)

cluster kern penalty whatsit glue or kern cluster
Ng | |Ooo| | p+z | 7 — | oog |T 7| Np

OOoOO0O0O0O0OOO0O0O00OoOod Ng O Np OOOOOAOODOODOO0O0O0OOOoOooOoooood
ooOoooooodno

OOooooodn OOomooooooooboooooooooboooooogo 2 oooogooo
OoOoOooooOoodn

JFM OO [M] JFM OOOOO0O00OO0DOoODOooOoooooooooooooooogogog
OO0O0O0O0O0O0O0oOoodooOoOd kanjiskip O OOOOOCOOOOOOOOOOO

1. OOO0O00O000O\inhibitglue OO OOOOODOOOOOOO whatsit OO0 OOO
OOO0mMOOO0 kanjiskip OOOOOOOOOOOOOOO

2. Ng O Np OOO JFMOOO jfmvar OOOOOO0O0O0O00O0O0O0O0O0O0O0OOOO0OOOO
OoOooooJrM OOO0O0O0OOOOoOooooooooooooooooooogo

3. 1. 002 O00000OOOONg O Np OOO JFM/jfmvar/ 000 0000O0O00O00OOOO

gb:= (N¢g OOOODOO0OOdiffmet' OOOOOOOOOOOOOOOON)
ga:=0000O0O0O0OO'diffmet' OOO OO Np OOOOODOOOOOOONO)

OOoOOoooooooooooooobooooooooooooon JFM O0OoO00000ga
Og OO0O0O0DOOOOO0O0OOO0O0O0DOO0OO0O0O0OOOO0O0OoOoOooooooooonog
ga O gb DDDDDDDDDDDDDDDDDDDDEDDDDDDDDD

ooog

\jfont\foo=psft:Ryumin-Light: jfm=ujis
\jfont\bar=psft:GothicBBB-Medium: jfm=ujis
\jfont\baz=psft:GothicBBB-Medium: jfm=ujis;jfmvar=piyo

ooos3soooooooo

p q T
—— —— ——N—
glyph glyph glyph
\foo, ‘[\bar, ‘[’ \baz, ‘[’

oo 3 boooobooooboonoooooooooooomoonoty O ¢ OoOooooon
OO0O0DOOooOoooOod (2) booooooobobog O - DOOO0ODOOoO0ooOOo0OooOodjfmvar
OooOoogooooDd 3) ooooogo

kanjiskip [K] OO [M] OODDO0ODO0ODOOO0OOOOkanjiskip D0 OO0 OO0OOOOOOO
OO0O00000O0O0oOoo0Oo0dddd\inhibitglue OOOOOOOOOOOOOCOOOO2 O
OOoooOoooooooooooooooooooooooooooan

Sdifferentjfm OO0 OO0 O00000MO000MO000MO0000000000000

27

1. 0000000000 Nq.tailONp.head OO OO OOOOOOOOOO autospacing OO OO
OO0O0 false OOOOOOOOO 0 O glue OO0 O

2. 00000000 kanjiskip 00000000 \maxdimen = (230 — 1) sp OO 00O Okanjiskip
000000000 glie 000000

3. 2. 0000000Ng, Np OOOOOOOJFM OO0OOO00O0O0O kanjiskip OO OOOOOOO
OooooooooooooooOoo ADO O BOoOooooOooooooooooooood
OJFM OOO0Doooooooooooogoooo JFM DOoooogoooo M) 3.
OoOoOooooooooooodn

Ooboooooooboooooodn oomoooooooooboooodn

line-end [E] Ng¢ O Np OODOOOOOOOOOOOON DOOOOOOOOOOOOOOOOOOOOg
oooooooooooooooooad
1. OOoOooOooooooobooooboobomoooooooooood

2. 000000 glve OOOOOOO0 O glve OO OOOOOOOMOOOOO Ng OOOOOO
O'lineend' OOOOOOOOOOOOOOOOOJFM OOOOOOOO

3. 2. 0000000000O000oOocOnooooooooobooobooooooooooodn
oood

Odoooooooodoo gdod
a:= (N(EDDDDEIDD postbreakpenalty C11) + (NAZ]DDDDDDD prebreakpenalty [101)

O0DOOOooOodogod [—10000,10000) DOOODOOOOOO £10000 COOOOODOOOOOOOO
OOoOoOoooodn e oOoOooooooooooooOoonono

o OOOO0O0OO Ng O Np OOOOOOOOOOOOoooooooog

P-normal [PN] Ng O Np 000 (a) OOOOO0O00 (penalty._node) 00000 000000000
0O0000000000000000000+10000 000000000000« 00000000
OOOO00010000 + (—10000) = 0 DOOO00

O0O0O0O0OO(G) OO0 Oooo0oooogdd « 0o
OO0O0000000000 penalty_node OO OODOOOOOOOOOOOOO Np OOOOOO
O..... Ooooooooobooooooooooooooogoon

 OOOOOOHODOOOOOOOOOOOONg O Np OO OO OOOOOooooogoogon
OOO0O0O0oOOoOooooooe«# 0000000000 O00O0O0O0O0OOO

 DOOO0OOOOOOOOooooboooooooooobooomooboooooboonoo0m
OOOoOoOOoooooooooooooooodooobotdbe = 0 OOOOO penalty _node
Ooooooooog

« OOOO0OO0OOOOOOOe # 0 OO0 penalty_node OO OOOOONO

11.5 LQggoon

DDDDDDD@DDDDDDDD

OO0AO0O0O0OO NeOOOAOONyOOOOOOOJFM OOOO00OOO0O0O0OoOooooooood

- IO0O00OOOOOOOOOOOOO Boundary-B [Og] OO OOOOOODOOOOOON
O0O0O00OdOdOxkanjiskip [X] OOOOOOOO

- DOODOOODOOOOOOOOOO line-end [E] DOOOODOOODOODOOOOOOOOOOOOO
ooog

- DOODOOOOOOOOOoOd P-normal [PN] DOOOOOO
00000000 Ng.taildNp.headO

28

Table 6. Summary of JFM glues.

Np 1 OoA OdB oo O glue kern
DoA : }i\f\l_}K _Icillb‘\lﬁK _(;AN_}X _PAOA _PNOA _PSOA
boB : ?’BA_}K — PS = = PS .

o0 |Egrex =

H : PA =

E Os

glue PN

kern EpisOB
Here * means that

1. To determine the ‘right-space’, LuaTEX-ja first attempts by the method ‘JFM-origin [M].
If this attempt fails, LuaTEX-ja use the method ‘kanjiskip [K].

2. The ‘left space’ between Ng and Np is determined by the method ‘line-end [E].

3. LuaTgX-ja adopts the method ‘P-normal [PN]’ to adjust the penalty between two clusters
for kinsoku shori.

Boundary-B [Og] OOOODOOOOOOODODOOODODOOOODODODOOOOOOOOOG
OO0ooOoooOooooodoogdoJrM-eorigin (M| OOOOOO0OOOOOOOOOOOOOO
Obooooooooooooboooooooboooooboonooood

1. OOO0OO00O000OO\inhibitglue OOOOOOOOO0O0OOO0OOO whatsit OOOOOOO
oooomoood

2. OO0OOOO0O0O0Ng OOOOOO0OO jeharbdd' OOOOOOO0OOOOOOOOOOOO
ooodo

xkanjiskip [X] OOOOO0Ckanjiskip [K] 000000000 Ckkanjiskip 0000000000000
0000000000000000\inhibitglue J000000000000000

1. OOOO00O000O0000OOxkanjiskip OO OOOOOOOO0O0OOOOO0O0OOOOOOOOO
OOoOoOoooodglve OOOOOO

- NOOOOOOOOOOOOOOOOODODDODOODOON autoxspacing OOOOOMOM false
ooog

o NgOOOOOOOOOODOOOmmOOOO xkanjiskip OO OOO0OOOOOOOOOOONO
jaxspmode (or alxspmode) OO OO0 2 OO0

o Np OOOOOOOOOOOOOIMOOOO xkanjiskip OOOOO0OOOOOOOOOOONO
jaxspmode (or alxspmode) OO OO OO OO

2. OOOOOO0O0 xkanjiskip 000000000 \maxdimen = (23° —1) sp OO OO Ckkanjiskip
OOoOO0O0oodd glve OOOOOO

3. 2. 0000000ONg, NpOOOA/O0BOO0OOOOOOOODOOOO JFM ODOOOOd
OO xkanjiskip OO O OOOO

OO0O00O0A OO NgOOOOONyOOOAOOOOJFM OOOOOOCOO0O0OCOOO0OoooOoo
0000 ADO0ODO0OO0D0O0OOdOBoundary-A [0 DOODOOOOOOO

29

« DOODOOO0OOOO0O0OOOOOONOd Boundary-A [Oa] OO OOOOOOOOOOOOOOO
O0O0O00OdoOOOxkanjiskip [X] OOOOCOOOO

« N OOODOOOOOmoOoOoOooooooood
- DOODOOOOOOOOOoOd P-normal [PN] DOOOOOO

Boundary-A [O,] OOOOOOOOOOOOODOOOOO0ODOOODOOOODOOOOOOOOOOOOg
OoOooooooooooogogoddrM-origin (M OOODODOOOOOOOOOOOOOO
totodoudoudoodooabooaboaooaooaoodood

1. OOO0OO0O0O0O0OO\inhibitglue OO OOOOOOOOOO0OOOO whatsit OOOOOOO
OoOoOooomonod

2. OO0DOOOOmMOOOoOOO: jeharbdd ' OO0 Np OO OOOOOOOOOOOO
oo

O0OADODOOOOODOOOOOOo NeOOOAOONy OOOOOOOoOoOoooooooooooood
OooooooooogJFM OO Ooooooooooooooooooooooooooobgoogn
Ubooboaotoaoodaooaouaaooabouoogoodon

« DO0OOOO0OOOO0OOOOOO Boundary-B [Og] DO OOODOOOODOOOOOOOOOOO
Oboooomooooooooooan

« JOOOOOOODOOOOOOOO lineend [E] 00D O0O0OODOOOOOOOOOOOOOOOO
ooooooood

 JOODODOOOOODOOOOOOOOOO Np DOOODOOOOOO0OOOONp.head OOODOO
OOO0OO0Np.head OO prebreakpenalty OO OO 0 DOOOOOOOOOOOOO

a:= (NcﬂI:IDDDDDD postbreakpenalty CJOJ).

O NpOOOOOOOOOMOO0O0OdOdoooooooooOooo0oodddd\penalty10000
o o o o 2P [P YYAR | 7
O P-normal [PN] OO OOOOOOOO

000 NpODOOoOooOOoohoooOoodogd P-normal [PN] DOOOO

OO0 Ny OOOOoOoOoOoooooooooooooooooooooooooooooooooo
o o T oo XS | S
oOono

OO0Od P-normal [PN]OP-allow [PA]OP-suppress [PS] OOOOONg O Np OOOOOOOOO (a)
OOoOOooooOooooooooboooooooooonO

P-allow [PA] NgO Np 000 (a) 00000000000 00P-normal [PN] 000000000000
000000000000« 00000000

() DOODOODO0ODODDOOD0O00O0OLuaTEX-ja O N¢ O Np OOOOOODOOODOOOO
Ooooooooooooononn « 0004 penalty node 100000000 OOOOOOOOO
Np OOOOOoOoooono
 OOOOOOoooooooooooboooooooood
o« LOOdOoobouoboaooaoodoodoodn
P-suppress [PS] N¢ O Np 000 (a) DOOOOOOO0OO0O0OOP-normal [PN] OOOOOOO0OOO
OOoOoooooooooodnd « DOoooOoOooo

(3 1 o 0 A o o o
O000LwaTeX-ja OOOOOOOOOO0O0O0O0COO0OCOO0OC0OO0O0MOOOOd gluve OOOOO
OOOOO\penalty10000 OOOOOO

30

Oomboooooooomooooooonon

Ngq Np
— ~ =
glyph glue

LD’ — 1pt

OO0OOOOoOOOdoooodDde0OnOdnOnOd postbreakpenalty DO OO OO HOOOOOOO 2 O
ooobooonogd

Ngq Np
— ~
glyph kern glue
‘T | [OO0| 7 |1pt 1)

OO000ec OOOODOOO0O0O0000O000000000OO0Opostbreakpenalty O0Oe OOOOOONO
ooooboooooboooooooooon O

Nq Np
— ~ =
glyph penalty kern glue

‘0|7 | e |7 |00g] 7 |1pt

ODooooooooodbo

OOOOoOoooooooo A 0O Ny ODOOoOoOoOooooooooony Ooo AOOooooood
OOO0OONg O Np OOO0OO0O0DO00O0O0OO00oooooooomoooooooooooooo
oono

- JOODO0DOODOOOOOOOO Boundary-A [0 DO OO ODOODOOOOODODOOOOOO
OOoooomooooooooooan

« NgOOOOOOoOooOmoOooOoooooooano
 JOODOOOOODOOOOON OOOOOO0OOO0ONg.tel OOOOOOOO

a:= (NEDDDDDDD prebreakpenalty OJJ).

0 N¢ OOOO0000P-allow [PA] 00000
000 Ng O0O0000000P-normal [PN] 00000
000 Ng OOO00O00000P-suppress [PS] OOOO0

OOAOOOBOOO OOOOOOOODOOOBOOOOOODOOOOOOOOor OOOOOOOO
OOoO0O0oooooooooobooooooooooooooboooooo Aboooooo

o DOBOOOOOFM DODODOOOOOOOODOOO JFM-origin [M]Boundary-A [Oa]Boundary-B [Og]O]
OOoooOooooomoooooooooooooooodn

- 00000 AD0000000 B 00000000 0Boundary-A [Oa] OO0 Boundary-B [Og]
OO0000000000000 kanjiskip [K] 0000000

- 00OBO20000000000OOkanjiskip [K]DOODOOOOO

 JO0BOOOODOOOOOOOOOOODOOOOOOOOOOOoOOomOO JFM OOoooooo
otogoodaoodoa

« DOBOUODOBOOOODBOOOODODODODOODODODODODONO P-suppress [PS]
oooOoodno

« OO B OOOOODOO prebreakpenalty, postbreakpenalty OO OOOONO0 DOOOOOOOO

ooooooood

%kern—glue 0 1 0OOOOO00 (0DO0O0D0O0000000 0) 000000000 e = 10000 OO0OOOONg O Np OO
OOoO0oooooooobooooon

31

10 C\inhibitglue A\\ OOA
2 \hbox{[J CHA\\ OA
sOOA OOA

o 1 00O\inhibitglue OJ Boundary-B [Og] OO OO OO OOOOOOOODOODOAODDOOO
xkanjiskipO O OOOOOOOOOOOOO

« 200000000OOADDOOOOOOOOOOOOO B OO0 IIIIOOOOOOOd
OO0O0O0DOO0O0O0OOOO0OdOong Boundary-B [Og] DO OOOODOOOOOOOOxkanjiskip OO
ooooodno

30000 OOOOOOOOOOOOOOOOAOOOOOOOOOOooOoOoOooOooAOOOOd
Boundary-B [Og] DO OO ODOOOOOOOOOO

12 psft

References

[1] Victor Eijkhout, TgX by Topic, A TgXnician’s Reference, Addison-Wesley, 1992.

32

	I User's manual
	Introduction
	Backgrounds
	Major Changes from pTeX
	Notations
	About the project

	Getting Started
	Installation
	Cautions
	Using in plain TeX
	Using in LaTeX
	Changing Fonts
	fontspec

	Changing Parameters
	Editing the range of JAchars
	kanjiskip and xkanjiskip
	Insertion Setting of xkanjiskip
	Shifting Baseline
	Cropmark

	II Reference
	Font Metric and Japanese Font
	92jfont primitive
	Prefix psft
	Structure of JFM file
	Math Font Family
	Callbacks

	Parameters
	92 ltjsetparameter primitive
	List of Parameters

	Other Primitives
	Primitives for Compatibility
	92 inhibitglue primitive

	Control Sequences for LaTeX2ε
	Patch for NFSS2
	Cropmark/`tombow'

	Extensions
	luatexja-fontspec.sty
	luatexja-otf.sty

	III Implementations
	Storing Parameters
	Used Dimensions, Attributes and whatsit nodes
	Stack System of LuaTeX-ja

	Linebreak after Japanese Character
	Reference: Behavior in pTeX
	Behavior in LuaTeX-ja

	Insertion of JFM glues, kanjiskip and xkanjiskip
	Overview
	definition of a `cluster'
	段落／水平ボックスの先頭や末尾
	概観と典型例：2つの「和文A」の場合
	その他の場合

	psft
	References

