
The LuaTEX-ja package

The LuaTEX-ja project team

September 6, 2011

Contents

I User’s manual 2

1 Introduction 2
1.1 Backgrounds . 2
1.2 Major Changes from pTEX . 2
1.3 Notations . 2
1.4 About the project . 3

2 Getting Started 4
2.1 Installation . 4
2.2 Cautions . 4
2.3 Using in plain TEX . 4
2.4 Using in LATEX . 5
2.5 Changing Fonts . 5

3 Changing Parameters 6
3.1 Editing the range of JAchar . 6
3.2 kanjiskip and xkanjiskip . 6
3.3 Insertion Setting of xkanjiskip . 7
3.4 Shifting Baseline . 7
3.5 ‘tombow’ . 7

II Reference 8

4 Font Metric and Japanese Font 8
4.1 \jfont primitive . 8
4.2 Structure of JFM file . 8
4.3 Math Font Family . 9

5 Parameters 9
5.1 \ltjsetparameter primitive . 9
5.2 List of Parameters . 9

6 Other Primitives 9

7 Control Sequences for LATEX2ε 9

III Implementations 9

1

Part I

User’s manual
This documentation is far from complete. It may have many gram-
matical errors.

1 Introduction

The LuaTEX-ja package is a macro package for typesetting high-quality Japanese documents in LuaTEX.

1.1 Backgrounds

Traditionally, ASCII pTEX, an extension of TEX, and its derivatives are used to typeset Japanese documents
in TEX. pTEXis an engine extension of TEX: so it can produce high-quality Japanese documents without using
very complicated macros. But this point is a mixed blessing: pTEX is left behind from other extensions of
TEX, especially ε-TEX and pdfTEX, and from changes about Japanese processing in computers (e.g., the UTF-8
encoding).

Recently the extensions of pTEX, namely upTEX (Unicode-implementation of pTEX) and ε-pTEX (Merging
of pTEXand ε-TEX extension), have developed to fill those gap to some extent, but gaps are still exist.

However, the appearance of LuaTEX changed the whole situation. With using Lua ‘callbacks’, users can
customize the internal processing of LuaTEX. So there is no need to modify sources of the TEX engine to support
Japanese typesetting: to do this, we only have to write Lua script for appropriate callbacks.

1.2 Major Changes from pTEX

The LuaTEX-ja package is much influenced by pTEX engine. The initial target of development was to implement
features of pTEX. However, LuaTEX-ja is not a just porting of pTEX: Unnatural specifications/behaviors of pTEX
were not adopted.

The followings are major changes from pTEX:

• Japanese fonts are a tuple of a ‘real’ font, a Japanese font metric (JFM, for short), and an optional string
called ‘variation’.

• In pTEX, a linebreak after Japanese character is ignored (and doesn’t yield a space), since Japanese texts
can linebreak almost everywhere. However, LuaTEX-ja doesn’t have this function completely, because of
a specification of LuaTEX.

• The insertion process of glues/kerns between two Japanese characters and between a Japanese character
and other characters (we refer these glues/kerns as JAglue) is rewritten from scratch.

– As LuaTEX’s internal character handling is ‘node-based’ (e.g., of{}fice doesn’t prevent ligatures),
the insertion process of JAglue is now ‘node-based’.

– Furthermore, nodes between two characters which have no effects in linebreak (e.g., \special node)
are ignored in the insertion process.

– In the process, two Japanese fonts which differ in their ‘real’ fonts only are identified.

• At the present, vertical typesetting (tategaki), is not supported in LuaTEX-ja.

For detailed information, see Part III.

1.3 Notations

In this document, the following terms and notations are used:

• Characters are divided into two types:

– JAchar: standing for Japanese characters such as Hiragana, Katakana, Kanji and other punctuation
marks for Japanese.’

– ALchar: standing for all other characters like alphabets.

• A word in sans-serif font (like prebreakpenalty) represents an internal parameter for Japanese typesetting,
and it is used as a key in \ltjsetparameter command.

2

• The word “primitive” is used not only for primitives in LuaTEX, but also for control sequences that defined
in the core module of LuaTEX-ja.

1.4 About the project

Project Wiki http://sourceforge.jp/projects/luatex-ja/wiki/FrontPage%28en%29

This project is hosted by SourceForge.JP.

Members

3

http://sourceforge.jp/projects/luatex-ja/wiki/FrontPage%28en%29

2 Getting Started

2.1 Installation

To install the LuaTEX-ja package, you will need:

• LuaTEX, version 0.65.0-beta or later.
If you are using TEX Live 2011 or W32TEX, you don’t have to worry.

• The source archive of LuaTEX-ja, of course:)

The installation methods are as follows:

1. Download the source archive.

At the present, LuaTEX-ja has no official release, so you have to retrieve the archive from the repository.
You can retrieve the Git repository via

$ git clone git://git.sourceforge.jp/gitroot/luatex-ja/luatexja.git

or download the archive of HEAD in the master branch from

http://git.sourceforge.jp/view?p=luatex-ja/luatexja.git;a=snapshot;h=HEAD;sf=tgz.

2. Extract the archive. You will see src/ and several other sub-directories.

3. Copy all the contents of src/ into one of your TEXMF tree.

4. If mktexlsr is needed to update the filename database, make it so.

2.2 Cautions

• The encoding of your source file must be UTF-8.

• conflicts with unicode-math

2.3 Using in plain TEX

To use LuaTEX-ja in plain TEX, simply put the following at the beginning of the document:

\input luatexja.sty

This does the minimal setting (like ptex.tex) for typesetting Japanese documents:

• The following 6 Japanese fonts are preloaded.

classification font name 13.5Q 9.5Q 7Q

mincho Ryumin-Light \tenmin \sevenmin \fivemin

gothic GothicBBB-Medium \tengt \sevengt \fivegt

– The ‘Q’ is an unit used in Japanese phototypesetting, and 1Q = 0.25mm. This length is stored in
a dimension \jQ.

– It is widely accepted that the font ‘Ryumin-Light’ and ‘GothicBBB-Medium’ aren’t embedded into
PDF files, and the PDF reader substitutes them by some external Japanese font. We adopt this
custom to the default setting.

– size

• A character in Unicode is treated as JAchar if and only if its code-point has more than or equal to
U+0100.

• The amount of glue that are inserted between JAchar and ALchar (the parameter xkanjiskip) is set to

0.25 \zw+1 pt
−1 pt =

27

32
mm+1 pt

−1 pt.

Here \zw is a counterpart of em for Japanese fonts, that is, the length of ‘full-width’ in the current Japanese
font.

4

http://git.sourceforge.jp/view?p=luatex-ja/luatexja.git;a=snapshot;h=HEAD;sf=tgz

2.4 Using in LATEX

LATEX2ε Using in LATEX2ε is basically same. To set up the minimal environment for Japanese, you only have
to load luatexja.sty:

\usepackage{luatexja}

It also does the minimal setting (the counterpart in pLATEX is plfonts.dtx and pldefs.ltx):

• JY3 is used as the font encoding for Japanese fonts (in horizontal direction).
If vertical typesetting is supported by LuaTEX-ja, JT3 will be used for vertical fonts.

• Two font families mc and gt are defined:

classification family \mdseries \bfseries scale

mincho mc Ryumin-Light GothicBBB-Medium 0.960444
gothic gt GothicBBB-Medium GothicBBB-Medium 0.960444

• Japanese characters in math mode are typeset by the font family mc.

However, the above setting is not sufficient for Japanese-based documents. To do this, You are better to use
class files other than article.cls, book.cls, ... The better alternatives are:

• BXjscls

• ltjarticle, ltjbook?

• ltjsarticle, ltjsbook?

2.5 Changing Fonts

Remark: Japanese Characters in Math Mode Since pTEX supports Japanese characters in math mode,
there are sources like the following:

1 $f_{高温}$~($f_{\text{high temperature}}$).

2 \[y=(x-1)^2+2\quad{}よって\quad y>0 \]

3 $5\in{}素:=\{\,p\in\mathbb N:\text{p is a

prime}\,\}$.

f
高温

(fhigh temperature).

y = (x− 1)2 + 2 よって y > 0

5 ∈ 素 := { p ∈ N : p is a prime }.

We (the project members of LuaTEX-ja) think that using Japanese characters in math mode are allowed if these
are used as identifiers. In this point of view,

• The lines 1 and 2 above are not correct, since ‘高温’ in above is used as a textual label, and ‘よって’ is
used as a conjunction.

• However, the line 3 is correct, since ‘素’ is used as an identifier.

Hence, in our opinion, the above input should be corrected as:

1 $f_{\text{高温}}$~%

2 ($f_{\text{high temperature}}$).

3 \[y=(x-1)^2+2\quad

4 \mathrel{\text{よって}}\quad y>0 \]

5 $5\in{}素:=\{\,p\in\mathbb N:\text{p is a

prime}\,\}$.

f
高温

(fhigh temperature).

y = (x− 1)2 + 2 よって y > 0

5 ∈ 素 := { p ∈ N : p is a prime }.

どう繋ごうか？

In this chapter, we don’t describe how to change Japanese fonts in math mode. For the method, please see
Part II.

plain TEX To change Japanese fonts in plain TEX, you must use the primitive \jfont. So please see Part II.

5

NFSS2 For LATEX2ε, LuaTEX-ja simply adopted font selection system from that of pLATEX2ε (in: plfont.dtx).

• Two control sequences \mcdefault and \gtdefault are used to specify the default font family for mincho
and gothic, respectively.

• Commands \fontfamily, \fontseries, \fontshape and \selectfont can be used to change attributes
of Japanese fonts.

encoding family series shape

alphabetic fonts \romanencoding \romanfamily \romanseries \romanshape

Japanese fonts \kanjiencoding \kanjifamily \kanjiseries \kanjishape

both — – \fontseries \fontshape

auto select \fontencoding \fontfamily — —

• For defining a Japanese font family, use \DeclareKanjiFamily instead of \DeclareFontFamily.

fontspec To use with fontspec package, it is needed to load luatexja-fontspec package in the preamble.
This additional package automatically loads luatexja and fontspec package, if needed.

In luatexja-fontspec package, the following 4 commands are defined as counterparts of original commands
in fontspec:

Japanese fonts \jfontspec \setmainjfont \setsansjfont \newjfontfamily

alphabetic fonts \fontspec \setmainfont \setsansfont \newfontfamily

Note that there is no command named \setmonojfont, since it is popular for Japanese fonts that (nearly)
all Japanese glyphs have the same width.

3 Changing Parameters

There are many parameters in LuaTEX-ja. And due to the implementation, most of them were not stored as
internal register of TEX, but as an original storage system in LuaTEX-ja. Hence, to change or recall those
parameters, you have to use commands \ltjsetparameter and \ltjgetparameter.

3.1 Editing the range of JAchar

As noted before, the default setting is:

A character in Unicode is treated as JAchar if and only if its code-point has more than or equal to U+0100.

↑ TODO: CHANGE THIS!

3.2 kanjiskip and xkanjiskip

JAglue is divided into the following three categories:

• Glues/kerns specified in JFM. If \inhibitglue is issued, this glue will be not inserted.

• The default glue which inserted between two JAchars (kanjiskip).

• The default glue which inserted between a JAchar and an ALchar (xkanjiskip).

The value (a skip) of kanjiskip or xkanjiskip can be changed as the following.

\ltjsetparameter{kanjiskip={0pt plus 0.4pt minus 0.4pt},

xkanjiskip={0.25\zw plus 1pt minus 1pt}}

It may occur that JFM contains the data of ‘ideal width of kanjiskip’ and/or ‘ideal width of xkanjiskip’. To
use these data from JFM, set the value of kanjiskip or xkanjiskip to \maxdimen.

6

3.3 Insertion Setting of xkanjiskip

It is not desirable that xkanjiskip is inserted between every boundary between JAchar and ALchar. For
example, xkanjiskip should not be inserted after opening parenthesis (e.g., compare ‘(あ’ and ‘(あ’).

LuaTEX-ja can control whether xkanjiskip can be inserted before/after a character, by using jaxspmode and
alxspmode parameters.

1 \ltjsetparameter{jaxspmode={‘あ,preonly},

alxspmode={‘\!,postonly}}

2 p あq !う
pあq !う

The second argument preonly means ‘the insertion of xkanjiskip is allowed before this character, but not
after’. the other possible values are postonly, allow and inhibit.

If you want to enable/disable all insertion of kanjiskip and xkanjiskip, set autospacing and autoxspacing
parameters to false, respectively.

3.4 Shifting Baseline

To make a match between a Japanese font and an alphabetic font, sometimes the shifting of baseline of one of
the pair. In pTEX, this is achieved by setting \ybaselineshift to a non-zero length (the baseline of alphabetic
fonts is shifted below). However, for documents whose main language is not Japanese,it is good to shift the
baseline of Japanese fonts, but not that of alphabetic fonts. Because of this, LuaTEX-ja can be independently
set the shifting amount of the baseline of alphabetic fonts (yalbaselineshift parameter) and that of Japanese fonts
(yjabaselineshift parameter).

1 \vrule width 150pt height 0.4pt depth 0pt\hskip

-120pt

2 \ltjsetparameter{yjabaselineshift=0pt,

yalbaselineshift=0pt}abc あいう

3 \ltjsetparameter{yjabaselineshift=5pt,

yalbaselineshift=2pt}abc あいう

abcあいう abc
あいう

Here the horizontal line in above is the baseline of a line.
There is an interesting side-effect from that the baseline of Japanese fonts can be shifted: characters in

different size can be vertically aligned center in a line, by setting two parameters appropriately.

1 xyz 漢字

2 {\scriptsize

3 \ltjsetparameter{yjabaselineshift=-1pt,

4 yalbaselineshift=-1pt}

5 XYZ ひらがな

6 }abc かな

xyz漢字

XYZ ひらがな abcかな

3.5 ‘tombow’

‘tombow’ is a mark for indicating 4 corners and horizontal/vertical center of the paper. pLATEXand this
LuaTEX-ja support ‘tombow’ by their kernel. The following steps are needed to typeset tombow:

1. First, define the banner which will be printed at the upper left of the paper. This is done by assigning a
token list to \@bannertoken.

For example, the following sets banner as ‘filename (2012-01-01 17:01)’:

\makeatletter

\hour\time \divide\hour by 60 \@tempcnta\hour \multiply\@tempcnta 60\relax

\minute\time \advance\minute-\@tempcnta

\@bannertoken{%

\jobname\space(\number\year-\two@digits\month-\two@digits\day

\space\two@digits\hour:\two@digits\minute)}%

2. ...

7

Part II

Reference

4 Font Metric and Japanese Font

4.1 \jfont primitive

Caution: 10pt

4.2 Structure of JFM file

A JFM file is a Lua script which has only one function call:

luatexja.jfont.define_jfm { ... }

Real data are stored in the table which indicated above by { ... }. So, the rest of subsection are devoted to
describe the structure of this table. Note that all lengths in a JFM file are floating-point numbers in design-size
unit.

dir=〈direction〉 (required)

The direction of JFM. At the present, only ’yoko’ is supported.

zw=〈length〉 (required)

The amount of the length of the ‘full-width.

zh=〈length〉 (required)

kanjiskip={〈natural〉, 〈stretch〉, 〈shrink〉} (optional)

This field specifies the ‘ideal’ amount of kanjiskip. As noted in Subsection 3.2, if kanjiskip is \maxdimen,
the value specified in this field is used (if this field is not specified in JFM, 0 pt is used). Note that 〈stretch〉
and 〈shrink〉 fields are in design-size unit too.

xkanjiskip={〈natural〉, 〈stretch〉, 〈shrink〉} (optional)

Like the kanjiskip field, this field specifies the ‘ideal’ amount of xkanjiskip.

Besides from above fields, a JFM file have several sub-tables those indices are natural numbers. The table
indexed by i ∈ ω stores informations of ‘character class’ i. At least, the character class 0 is always present, so
each JFM file must have a sub-table whose index is [0]. Each sub-table (its numerical index is denoted by i)
has the following fields:

chars={〈character〉, ...} (required except character class 0)

This field is a list of JAchars which are in this character type i. This field is not required if i = 0, since
all JAchar which are not in any character class other than 0 (hence, the character class 0 contains most
of JAchars). In the list, a JAchar can be specified by its code number, or by the character itself (as a
string of length 1).

In addition to those ‘real’ characters, the following ‘imaginary characters’ can be specified in the list:

width=〈length〉, height=〈length〉, depth=〈length〉, italic=〈length〉
Specify width of characters in character class i, height, depth and the amount of italic correction. These
fields are required.

left=〈length〉, down=〈length〉, align=〈align〉
These are for adjusting the position of the ‘real’ glyph. Legal values of align field are ’left’, ’middle’
and ’right’. If one of these 3 fields are omitted, left and down are treated as 0, and align field is
treated as ’left’. The effects of these 3 fields are indicated in Figure 1.

In most cases, left and down fields are 0, while it is not uncommon that the align field is ’middle’ or
’right’. For example, setting the align field to ’right’ is practically needed when the current character
class is the class for opening delimiters’.

kern={}

glue={}

8

height

depth

width

left

down

Consider a node containing Japanese character whose value of the
align field is ’middle’.

• The black rectangle is a frame of the node. Its width, height
and depth are specified by JFM.

• Since the align field is ’middle’, the ‘real’ glyph is centered
horizontally (the green rectangle).

• Furthermore, the glyph is shifted according to values of fields
left and down. The ultimate position of the real glyph is the
red rectangle.

Figure 1: The position of the ‘real’ glyph

4.3 Math Font Family

5 Parameters

5.1 \ltjsetparameter primitive

5.2 List of Parameters

kcatcode ={〈chr code〉,〈value〉}

prebreakpenalty ={〈chr code〉,〈penalty〉}

postbreakpenalty ={〈chr code〉,〈penalty〉}

jatextfont ={〈jfam〉,〈jfont cs〉}

jascriptfont ={〈jfam〉,〈jfont cs〉}

jascriptscriptfont ={〈jfam〉,〈jfont cs〉}

yjabaselineshift =〈dimen〉

yalbaselineshift =〈dimen〉

jaxspmode ={〈chr code〉,〈mode〉}

alxspmode ={〈chr code〉,〈mode〉}

autospacing =〈bool〉

autoxspacing =〈bool〉

kanjiskip =〈skip〉

xkanjiskip =〈skip〉

jcharwidowpenalty =〈penalty〉

differentjfm =〈mode〉

jacharrange =〈ranges〉

6 Other Primitives

7 Control Sequences for LATEX2ε

Part III

Implementations

9

	I User's manual
	Introduction
	Backgrounds
	Major Changes from pTeX
	Notations
	About the project

	Getting Started
	Installation
	Cautions
	Using in plain TeX
	Using in LaTeX
	Changing Fonts

	Changing Parameters
	Editing the range of JAchar
	kanjiskip and xkanjiskip
	Insertion Setting of xkanjiskip
	Shifting Baseline
	`tombow'

	II Reference
	Font Metric and Japanese Font
	92jfont primitive
	Structure of JFM file
	Math Font Family

	Parameters
	92 ltjsetparameter primitive
	List of Parameters

	Other Primitives
	Control Sequences for LaTeX2ε

	III Implementations

